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P R E F A C E

Calculus books have become full of clutter, distracting margin notes, and unneeded fea-
tures. This calculus book clears out that clutter so that students can focus on the important 
ideas of calculus. Our goal was to create a clean, streamlined calculus book that is acces-
sible and readable for students while still upholding the standards required in science, 
mathematics, and engineering programs, and that is fl exible enough to accommodate dif-
ferent teaching and learning styles.

Linear Flow with Clean Margins
One thing that is distinctive about this calculus book is that it follows a linear writing style. 
Figures and equations fl ow with the text as part of a clear, structured exposition instead of 
being scattered about in the margins. We feel that this approach greatly increases the clar-
ity of the book and encourages focused reading.

Exposition Before Calculation
Another distinctive feature of this book is that in each section we have separated the expo-
sition and illustrative examples from the longer, more complicated calculational examples. 
Including these longer examples separately from the exposition increases fl exibility: 
Students who want to read and understand the development of the material can do so 
without being bogged down or distracted by large examples, while students who want to 
use the book as a reference for looking up examples that are similar to homework prob-
lems can also do that.

Examples to Learn From
Within the exposition of each section are short examples that quickly illustrate the concepts 
being developed. Following the exposition is a set of detailed, in-depth examples that explore 
both calculations and concepts. We took great pains to provide many steps and illustrations 
in each example in order to aid the student, including details about how to get started on a 
problem and choose an appropriate solution method. One of the elements of the book that we 
are most proud of is the “Checking the Answer” feature, which we have included after selected 
examples to encourage students to learn how to check their own answers.

Building Mathematics
We were very careful in this book to approach mathematics as a discipline that is devel-
oped logically, theorem by theorem. Whenever possible, theorems are followed by proofs 
that are written to be understood by students. We have included these proofs because 
they are part of the logical development of the material, but we have clearly labeled and 
indented each proof to indicate that it can be covered or skipped, according to instructor 
preference. Each exercise set contains an optional subsection of proofs, many of which are 
accessible even to beginning students. In addition, we have emphasized the interconnec-
tions among topics by providing “Thinking Back” and “Thinking Forward” exercises in 
each section and “Capstone” problems at the end of each chapter.

Consistency and Reliability
Another improvement in this book is that it has a consistent and predictable structure. For 
example, instructors can rely on every section concluding with a “Test Your Understanding” 

vii
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Prefaceviii

feature which includes fi ve questions that students can use to self-test and that instruc-
tors can choose to use as pre-class questions. The exercises are always consistently split 
into subsections of different types of problems: “Thinking Back,” “Concepts,” “Skills,” 
“Applications,” “Proofs,” and “Thinking Forward.” In addition, the “Concepts” subsec-
tion always begins with a summary exercise, eight true/false questions, and three example 
construction exercises. Instructors and students alike can rely on this consistent structure 
when assigning exercises and choosing a path of study.

Flexibility
We recognize that instructors use calculus books in many different ways and that the real 
direction of a calculus course comes from the instructor, not any book. The streamlined, 
consistent structure of this book makes it easy to use with a wide variety of courses and 
pedagogical styles. In particular, instructors will fi nd it easy to include or omit sections, 
proofs, examples, and exercises consistently according to their preferences and course re-
quirements. Students can focus on mathematical development or on examples and calcu-
lations as they need to throughout the course. Later, they can use the book as a reliable 
reference.

We think it will be immediately clear to anyone opening this book that what we have 
written is substantially different from the other calculus books on the market today while 
still following the standard topics taught in most modern science, mathematics, and engi-
neering calculus courses. Our hope is that faculty who use the book will fi nd it fl exible for 
different pedagogical approaches and that students will be able to read it on different levels 
as they learn to understand the beauty of calculus.

A Special Taalman/Kohn Option for Underprepared 
Calculus Students
Do some of your calculus students struggle with algebra and precalculus 
 material? The Taalman/Kohn Calculus series has a ready-made option for such 
students, called Calculus I with Integrated Precalculus. This option includes all 
the material in Chapters 0–6 of Taalman/Kohn Calculus, but in a different order 
and with supplementary precalculus and algebra material.

  Chapters 0–3 of Calculus I with Integrated Precalculus cover the same develop-
ment of differential calculus topics as Chapters 0–3 in Taalman/Kohn Calculus, 
but the more complicated calculational examples are deferred to later chapters.

  Chapters 4–6 of Calculus I with Integrated Precalculus revisit differential calculus 
through the lens of studying progressively more challenging types of functions. 
Any exercises or examples from Taalman/Kohn Calculus that were left out of 
Chapters 0–3 of Calculus I with Integrated Precalculus are included in Chap-
ters  4–6. The requisite background precalculus and algebra material is built 
from the ground up.

  Chapters 7–9 of Calculus I with Integrated Precalculus are identical to Chapters 4–6 
of Taalman/Kohn Calculus and cover all topics from integral calculus.

Students who learn Calculus I from Calculus I with Integrated Precalculus can 
 continue with Calculus II using Taalman/Kohn Calculus or any other calculus textbook. 
Students who have weak algebra and precalculus skills can succeed in STEM-level cal-
culus if given the right help along the way, and Calculus I with Integrated Precalculus is 
written specifi cally to  address the needs of those students.

For an examination copy of Calculus I with Integrated Precalculus, please contact 
your local W. H. Freeman & Company representative.

CALCULUS I

LAURA TAALMAN

with Integrated Precalculus
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Test Bank

Computerized (CD-ROM), ISBN: 1-4641-2547-3

Includes multiple-choice and short-answer test items.

Instructor’s Resource Manual

ISBN: 1-4641-2545-7

Provides suggested class time, key points, lecture material, discussion topics, class activi-
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Student Solutions Manual
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Multivariable ISBN: 1-4641-5019-2

Contains worked-out solutions to all odd-numbered exercises in the text.

Software Manuals

Maple™ and Mathematica® software manuals are available within CalcPortal. Printed ver-
sions of these manuals are available through custom publishing. They serve as basic intro-
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Book Companion Web Site at www.whfreeman.com/tkcalculus

For students, this site serves as a FREE 24–7 electronic study guide, and it includes such 
features as self-quizzes and interactive applets.

Online Homework Options
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WebAssign Premium integrates the book’s exercises into the world’s most popular and 
trusted online homework system, making it easy to assign algorithmically generated 
homework and quizzes. Algorithmic exercises offer the instructor optional algorithmic 
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solutions. WebAssign Premium also offers access to resources, including the new Dynamic 
Figures, CalcClips whiteboard videos, tutorials, and “Show My Work” feature. In addition, 
WebAssign Premium is available with a fully customizable e-Book option that includes 
links to interactive applets and projects.

 www.yourcalcportal.com

CalcPortal combines a fully customizable e-Book, exceptional student and instructor re-
sources, and a comprehensive online homework assignment center. Included are algo-
rithmically generated exercises, as well as Precalculus diagnostic quizzes, Dynamic Figures, 
interactive applets, CalcClips whiteboard videos, student solutions, online quizzes, Mathe-
matica and Maple manuals, and homework management tools, all in one affordable, easy-
to-use, and fully customizable learning space.

  webwork.maa.org

W. H. Freeman offers approximately 2,500 algorithmically generated questions (with full so-
lutions) through this free, open-source online homework system at the University of Roch-
ester. Adopters also have access to a shared national library test bank with thousands of 
additional questions, including 1,500 problem sets matched to the book’s table of contents.

Additional Media

 

This easy-to-use Web-based version of the Instructor’s Solutions Manual allows instruc-
tors to generate a solution fi le for any set of homework exercises. Solutions can be down-
loaded in PDF format for convenient printing and posting.

Interactive e-Book at ebooks.bfwpub.com/tkcalculus

The Interactive e-Book integrates a complete and customizable online version of the text 
with its media resources. Students can quickly search the text, and they can personal-
ize the e-Book just as they would the print version, with highlighting, bookmarking, and 
note-taking features. Instructors can add, hide, and reorder content, integrate their own 
material, and highlight key text.

Course Management Systems

W. H. Freeman and Company provides courses for Blackboard, WebCT (Campus Edition 
and Vista), Angel, Desire2Learn, Moodle, and Sakai course management systems. These 
are completely integrated solutions that you can easily customize and adapt to meet your 
teaching goals and course objectives. Visit www.macmillanhighered.com/catalog/other/
coursepack for more information.

 

This two-way radio frequency classroom response system was developed by educators 
for educators. University of Illinois physicists Tim Stelzer, Gary Gladding, Mats Selen, and 
Benny Brown created the i-clicker system after using competing classroom responses and 
discovering that they were neither appropriate for the classroom nor friendly to the stu-
dent. Each step of i-clicker’s development has been informed by teaching and learning. 
i-clicker is superior to other systems from both a pedagogical and a technical standpoint. 
To learn more about packaging i-clicker with this textbook, contact your local sales repre-
sentative or visit www.iclicker.com.
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DEFINITION 3.9 Formally Defining Concavity

Suppose f and f ′ are both differentiable on an interval I.

(a) f is concave up on I if f ′ is increasing on I.

(b) f is concave down on I if f ′ is decreasing on I.

How does this formal definition of concavity correspond with our intuitive notion of con-
cavity? Consider the functions graphed next. On each graph four slopes are illustrated and
estimated. Notice that when f is concave up, its slopes increase from left to right, and when
f is concave down, its slopes decrease from left to right.

Slopes increase when f is concave up Slopes decrease when f is concave down

y

�3

�1 1

4

x

y

3

1 �1

�4

x

F E A T U R E S

3.3 THE SECOND DERIVATIVE AND CURVE SKETCHING

� Using first and second derivatives to define and detect concavity

� The behavior of the first and second derivatives at inflection points

� Using the second-derivative test to determine whether critical points are maxima, minima, or neither

THEOREM 3.4 Rolle’s Theorem

If f is continuous on [a, b] and differentiable on (a, b), and if f (a) = f (b) = 0, then there
exists at least one value c ∈ (a, b) for which f ′(c) = 0.

Actually, Rolle’s Theorem also holds in the more general case where f (a) and f (b) are equal
to each other (not necessarily both zero). For example, Rolle’s Theorem is also true if f (a) =
f (b) = 5, or if f (a) = f (b) = −3, and so on, because vertically shifting a function by adding
a constant term does not change its derivative. However, the classic way to state Rolle’s
Theorem is with f (a) and f (b) both equal to zero.

Proof. Rolle’s Theorem is an immediate consequence of the Extreme Value Theorem from

Section 1.4 and the fact that every extremum is a critical point. Suppose f is continuous on the

closed interval [a, b] and differentiable on the open interval (a, b), with f (a) = f (b) = 0. By the Ex-

treme Value Theorem, we know that f attains both a maximum and a minimum value on [a, b]. If

one of these extreme values occurs at a point x = c in the interior (a, b) of the interval, then x = c
is a local extremum of f . By the previous theorem, this means that x = c is a critical point of f .
Since f is assumed to be differentiable at x = c, it follows that f ′(c) = 0 and we are done.

It remains to consider the special case where all of the maximum and minimum values of

f on [a, b] occur at the endpoints of the interval (i.e., at x = a or at x = b). In this case, since

f (a) = f (b) = 0, the maximum and minimum values of f (x) must both equal zero. For all x in [a, b]

we would have 0 ≤ f (x) ≤ 0, which means that f would have to be the constant function f (x) = 0

on [a, b]. Since the derivative of a constant function is always zero, in this special case we have

f ′(x) = 0 for all values of c in (a, b), and we are done.

xi

Each section opens with a list of the three main section topics. The list provides a focus 
and highlights key concepts.

Defi nitions are clearly boxed, numbered, and labeled for easy reference. To reinforce their 
importance and meaning, defi nitions are followed by brief, often illustrated, examples.

Theorems are developed intuitively before they are stated formally, and simple examples 
inform the discussion. Proofs follow most theorems, although they are optional, given 
instructor preference.
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EXAMPLE 4 Using critical points and Rolle’s Theorem to find local extrema

The function f (x) = x (x− 1)(x− 3) is a cubic polynomial with one local maximum and one
local minimum. Use Rolle’s Theorem to identify intervals on which these extrema exist.
Then use derivatives to find the exact locations of these extrema.

SOLUTION

The roots of f (x) = x (x − 1)(x − 3) are x = 0, x = 1, and x = 3. Since f is a polynomial,
it is continuous and differentiable everywhere. Therefore Rolle’s Theorem applies on the
intervals [0, 1] and [1, 3], and it tells us that at least one critical point must exist inside each
of these intervals.

The critical points of f are the possible locations of the local extrema that we seek. To
find the critical points we must solve the equation f ′(x) = 0. It is simpler to do some algebra
before differentiating:

f ′(x) = d
dx

(x (x − 1)(x − 3)) = d
dx

(x 3 − 4x 2 + 3x) = 3x 2 − 8x + 3.

By the quadratic formula, we have f ′(x) = 0 at the points

x = −(−8) ±
√

82 − 4(3)(3)

2(3)
= 8 ± √

28

6
= 4 ± √

7

3
.

These x-values are approximately x ≈ 0.451 and x ≈ 2.215. If we look at the graph of f ,
then we can see that the smaller of these two x-values is the location of the local maximum
and the larger is the location of the local minimum; see the figure that follows. �

Featuresxii

Color is used consistently and pedagogically in graphs and fi gures to relate like concepts. 
For instance, the color used for rectangles in Riemann sum approximations is also quite 
purposefully used for linear approximations of arc length and rectangular solid approxima-
tions of volume.

Cautions are appropriately placed at points in the exposition where students typically 
have questions about the nuances of mathematical thinking, processes, and notation.

Every section includes short illustrative examples as part of the discussion and develop-
ment of the material. Once the groundwork has been laid, more complex examples and 
calculations are provided. Students fi nd this approach easier to handle because the diffi cult 
calculations do not interfere with the development of why things work. Example solutions 
are explained in detail and include all the steps necessary for student comprehension.

Following many example solutions, Checking the Answer encourages students to learn 
to check their work, using technology such as a graphing calculator when appropriate.

CAUTION It is important to note that although we use the notation x−1 to denote the reciprocal
1

x
, the

notation f−1 does not stand for the reciprocal
1

f
of f . The notation f−1 used in Definition 0.10

is pronounced “f inverse.” We are now using the same notation for two very different
things, but it should be clear from the context which one we mean.

x

(f(a), g(a))

(f(tk), g(tk))

(f(tk�1), g(tk�1))

(f(b), g(b))

y

z

y
x

z

y
x

y

x
54321
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5
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Features xiii

CHECKING
THE ANSWER

The graph of f (x) = x(x − 1)(x − 3) is shown next. Notice that the local extrema do seem
to occur at the values we just found.

Extrema at x ≈ 0.451 and x ≈ 2.215

�1 4

�8

4

Each section closes with fi ve Test Your Understanding questions that test students on the 
concepts and reading presented in the section. Because answers are not provided, instruc-
tors may choose to use these questions for discussion or assessment.

Section Exercises are provided in a consistent format that offers the same types of ex-
ercises within each section. This approach allows instructors to tailor assignments to their 
course, goals, and student audience.

Thinking Back exercises ask students to review relevant concepts from previous sec-
tions and lessons.

Concepts exercises are consistently formatted to start with the following three problems:

• Problem 0 tests understanding.
• Problem 1 consists of eight true/false questions.
• Problem 2 asks the student to create examples based on their understanding of the 

reading.

Skills exercises offer ample practice, grouped into varying degrees of diffi culty.

Applications exercises contain at least two in-depth real-world problems.

Proofs exercises can be completed by students in non-theoretical courses. Hints are 
often provided, and many exercises mimic work presented in the reading and examples. 
Often, these exercises are a continuation of a proof offered as a road map in the narrative.

Thinking Forward exercises plant seeds of concepts to come. In conjunction with the 
Thinking Back exercises, they offer a “tie together” of both past and future topics, there-
by providing a seamless fl ow of concepts.

Chapter Review, Self-Test, and Capstones, found at the end of each chapter, present 
the following categories:

Defi nitions exercises prompt students to recall defi nitions and give an illustrative example.

Theorems exercises ask students to complete fi ll-in-the-blank theorem statements.

Formulas, Notation, and/or Rules exercises vary according to chapter content and 
ask students to show a working understanding of important formulas, equations, nota-
tion, and rules.

Skill Certifi cation exercises provide practice with basic computations from the chapter.

Capstone Problems pull together the essential ideas of the chapter in more challeng-
ing mathematical and application problems.

TEST YOUR? UNDERSTANDING
� Why could we not give a precise mathematical definition of concavity before this section?

� The domain points x = c where f ′′(c) = 0 or where f ′′(c) does not exist are the critical
points of the function f ′. Why?

� Why is it not clear to say a sentence such as “Because it is positive, it is concave up”?
How could this information be conveyed more precisely?

� Why does it make sense that f ′ is increasing when f ′′ is positive?

� Suppose x = c is a critical point with f ′(c) = 0. Why does it make graphical sense that
f has a local minimum at x = c when f is concave up in a neighborhood around x = c?
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Learning something new can be both exciting and daunting. To gain a full understanding 
of the material in this text, you will have to read, you will have to think about the connec-
tions between the new topics and the topics that were previously presented, and you will 
have to work problems—many, many problems. 

The structure of this text should help you understand the material. The material is 
laid out in a linear fashion that we think will facilitate your understanding. Each section 
is separated into two main parts: fi rst, a presentation of new material and then second, a 
set of Examples and Explorations, where you will fi nd problems that are carefully worked 
through. Working through these examples on your own, as you read the steps for guidance, 
will help prepare you for the exercises. 

Reading a mathematics book isn’t like reading a novel: You may have to read some 
parts more than once, and you may need to make notes or work things out on paper. Pay 
special attention to the “Checking Your Answer” features, so that you can learn how to 
check your own answers to many types of questions.

To succeed in calculus, you need to do homework exercises. The exercises in every 
section of this text are broken into six categories: “Thinking Back,” “Concepts,”  “Skills,” 
“Applications,”  “Proofs,” and  “Thinking Forward.”

• As the title suggests, the Thinking Back problems are intended to tie the current material 
to material you’ve seen in previous sections or even previous courses.

• The Concepts problems are designed to help you understand the main ideas presented 
in the section without a lot of calculation. Every group of Concepts exercises begins by 
asking you to summarize the section, continues with eight true/false questions, and 
then asks for three examples illustrating ideas from the section.

• The bulk of the exercises in each section consists of Skills problems that may require 
more calculation.

• The Applications exercises use the concepts from the section in “real-world” problems.
• The Proofs exercises ask you to prove some basic theory from the section.
• Finally, the Thinking Forward questions use current ideas to introduce topics that you 

will see in subsequent sections.

We hope this structure allows you to tie together the material as you work through 
the book. We have supplied the answers to the odd-numbered exercises, but don’t restrict 
yourself to those problems. You can check answers to even-numbered questions by hand 
or by using a calculator or an online tool such as wolframalpha.com. After all, on a quiz or 
test you won’t have the answers, so you’ll have to know how to decide for yourself whether 
or not your answers are reasonable.

Some students may like to work through each section “backwards,” starting by 
 attempting the exercises, then checking back to the examples as needed when they get 
stuck, and, fi nally, using the exposition as a reference when they want to see the big  picture. 
That is fi ne; although we recommend that you at least try reading through the sections in 
order to see how things work for you. Either way, we hope that the separation of examples 
from exposition and the division of homework problems into subsections will help make 
the process of learning this beautiful subject easier. We have written this text with you, the 
student, in mind. We hope you enjoy using it!

xvi

 T O  T H E  S T U D E N T

FMTOC_TK.indd Page xvi  03/12/12  4:11 PM user-f502FMTOC_TK.indd Page xvi  03/12/12  4:11 PM user-f502 /203/MH01832/mor34949_disk1of1/0078034949/mor34949_pagefiles/203/MH01832/mor34949_disk1of1/0078034949/mor34949_pagefiles



TKmaster2010 WHF00153/FREE087-Taalman November 26, 2012 18:20

C H A P T E R 0

Functions and Precalculus
0.1 Functions and Graphs

What Is a Function?
4

2

(2, 4)

Vertical and Horizontal Line Tests
Properties of Graphs
Examples and Explorations

0.2 Operations, Transformations, and Inverses
Combinations of Functions
Transformations and Symmetry
Inverse Functions
Examples and Explorations

0.3 Algebraic Functions
Power Functions
Polynomial Functions
Rational Functions
Absolute Value Functions
Examples and Explorations

0.4 Exponential and Trigonometric Functions
Exponential Functions
Logarithmic Functions
Trigonometric Functions
Inverse Trigonometric Functions
Examples and Explorations

0.5 Logic and Mathematical Thinking*
FromDefinitions to Theorems

A =⇒ B
Quantifiers
Implications
Counterexamples
Simple Mathematical Proofs
Examples and Explorations

Chapter Review, Self-Test, and Capstones

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 26, 2012 18:20

2 Chapter 0 Functions and Precalculus

0.1 FUNCTIONS AND GRAPHS

� Definition of functions and their domain and range

� Graphs, horizontal and vertical line tests, and one-to-one-functions

� Graphical properties and features, asymptotes, and average rate of change

What Is a Function?

Mathematics is a language. In order to understand it, you have to learn how to read it and
speak it with the correct vocabulary. Since calculus is at its heart the study of functions
of real numbers, the universe we will spend most of our time exploring is the set of real
numbers and the relationships between sets of real numbers. Therefore we must begin by
setting out the mathematical language that describes these relationships we call “func-
tions.” Once we all speak the same language, we can start building the theory of calculus.

Functions and their properties will be at the core of everything we study in this text.
In previous courses you likely encountered functions that were given in terms of formulas,
such as

y(x) = x 2,

that relate two variables x and y. To set the stage for studying such functions, we must
first be more precise about what functions are. Instead of thinking of functions merely as
formulas, think of them as describing a certain kind of rule, relationship, or mapping from
the elements of one set to the elements of another set.

DEFINITION 0.1 Functions

A function f from a set A to a set B is an assignment f that associates to each element
x of the domain set A exactly one element f (x) of the codomain, or target, set B.

We will use the notation

f : A → B

to represent a function f together with its domain set A and target set B. This notation is
pronounced “f from A to B.” If x and y are variables that represent elements of the sets A
and B, respectively, then we say that y is a function of x and write y = f (x) or y(x).

The variable x is called the independent variable and represents the “input” of the
function. The function f sends each input x to one and only one “output,” some value of
the dependent variable y. Notice that y depends on x, according to the assignment defined
by the function f .

For example, the assignment f : R → R that squares real numbers is a function, since
each real number x is assigned to one and only one real-number square x 2. Here R de-
notes the set of all real numbers, and f assigns each real-number input to exactly one
real-number output. Some real numbers (such as 3 and −3) get sent to the same square
( f (−3) = f (3) = 9), but this does not violate the definition of function. You can think of a
function as a machine that takes any given input value x and produces exactly one output
value f (x) (pronounced “f of x”), shown as follows:

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 26, 2012 18:20

0.1 Functions and Graphs 3

f

f (x)

x

x2

9

3

x2

9

�3

So, what isn’t a function? If a rule assigns a real-number input to more than one out-
put, then that rule is not a function. For example, consider the formula y = ±√

x. This
assignment does not define y as a function of x, because the input x = 4 corresponds to
two different y-values, both y = −2 and y = 2. In the “function machine” type of illus-
tration just shown, the number 4 would go into the machine and two numbers, −2 and 2,
would come out at once as outputs. This situation is not allowed for functions.

Returning to the squaring function y = x 2, notice that some real numbers can never
serve as outputs, because squares of real numbers can never be negative. The range, or set
of possible outputs, of the squaring function is [0,∞). In this text we will usually work with
functions whose domains and ranges are unspecified subsets of real numbers and whose
rules are given by formulas such as f (x) = x 2.

DEFINITION 0.2 Domain and Range of a Function

If f is a function between unspecified subsets of R, then we will take the domain of f to
be the largest subset of R for which f is defined:

Domain( f ) = { x ∈ R | f (x) is defined }.
The range of such a function is the set of all possible outputs that it can attain:

Range( f ) = { y ∈ R | there is some x ∈ Domain( f ) for which f (x) = y }.

For example, the function f (x) = √
x − 1 is defined only when x ≥ 1, and therefore f (x) =√

x − 1 has domain [1,∞). When we write the square root symbol without the “±” before
it, we always mean the positive square root. This means that f (x) = √

x − 1 can attain only
nonnegative y-values. In fact, every nonnegative value can be expressed in the form

√
x − 1

for some value of x, and therefore the function f (x) = √
x − 1 has range [0,∞).

A few notes about the notation we just used: The curly-brackets notation used in Def-
inition 0.2 is called set notation, and it is a way to describe a set of real numbers. In this
case the set notation for the domain of f is pronounced “the set of all x contained in R such
that f (x) is defined.” Notice in particular that the symbol “∈” means “contained in” and
the vertical bar means “such that.”

TECHNICAL POINT The name of a function is usually a single letter, such as “f .” The name
of the output of a function f evaluated at an input x is “f (x).” In this situation f is a function,
or relationship, and f (x) is a number that represents the output of the function at the input
value x. However, it is sometimes convenient to write f (x) (the name of the output of the
function) instead of f (the name of the function itself). This allows us to indicate the name
we are using for the independent variable when we reference the function. We may also
write things like “consider the function f (x) = x 2 + 1,” by which we mean “consider the
function f whose output at a real number x is f (x) = x 2 + 1.”
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4 Chapter 0 Functions and Precalculus

Vertical and Horizontal Line Tests

A function whose domain and range are sets of real numbers can be represented as
a collection of pairs (x, f (x)) of real numbers. If we plot these pairs as points in the
Cartesian plane, we obtain the graph of the function. In general we have the following
definition:

DEFINITION 0.3 The Graph of a Function

The graph of a function f is the collection of ordered pairs (x, f (x)) for which x is in the
domain of f . In set notation we can write

Graph( f ) = { (x, f (x)) | x ∈ Domain( f ) }.

For example, the graph of f (x) = x 2 is the collection of ordered pairs of the form (x, x 2), for
x ∈ R. Since f (−1) = (−1)2 = 1 and f (2) = 22 = 4, the points (−1, 1) and (2, 4) are on the
graph of f (x) = x 2. In contrast, the point (1, 2) is not a part of the graph, because f (1) �= 2,
as shown in the following graph:

Graph of f (x) = x 2 and partial table of values

x2x

(1, 2)

(2, 4)

(�1, 1) (1, 1)

�1
1
2

1
1 (not 2)
4

y

x
21�1�2

3

4

2

1

A function always has exactly one output value for every input in the domain, which
means that the graph of a function always passes the following test, which you will prove in
Exercise 90:

THEOREM 0.4 The Vertical Line Test

A graph represents a function if and only if every vertical line intersects the graph in at
most one point.

For example, consider the three graphs that follow this paragraph. The leftmost graph
passes the vertical line test and thus is the graph of a function. The graph in the mid-
dle fails the vertical line test because the vertical line x = 2 intersects the graph in two
points, (2, 1) and (2, 3); therefore themiddle graph does not represent a function. The right-
most graph assigns the same output to two distinct inputs, but that is perfectly fine for a
function. Because the graph on the right passes the vertical line test, it is the graph of a
function.
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A graph that is a function A graph that is not a function A function, but not one-to-one
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1

3

4

1 2
x

43

y

If each element of the range of a function is the output of exactly one element of the
domain, then the function is said to be one-to-one. Graphically, we can tell if a function f is
one-to-one by checking to see if it passes the horizontal line test: if f is one-to-one, then
every horizontal line meets the graph of f at most once; see Exercise 91. Algebraically, this
means that a function f is one-to-one if two distinct elements in the domain are always
sent to different elements of the range:

DEFINITION 0.5 One-to-One Function

A function f is one-to-one if, for all a and b in the domain of f ,

a �= b =⇒ f (a) �= f (b).

In this definition the notation ⇒ is pronounced “implies,” and it means that if the
left-hand part of the expression is true, then the right-hand part of the expression is also
true. In other words, the statement “A ⇒ B” is synonymous with the statement “if A,
then B.”

A logically equivalent form of Definition 0.5 is its so-called contrapositive:

f (a) = f (b) =⇒ a = b.

As we will see in Section 0.5, the contrapositive of an implication A ⇒ B is the equivalent
statement (not B) ⇒ (not A). The contrapositive form of Definition 0.5 is often easier to
use, because it is an affirmative rather than a negative statement. For example, f (x) = 3x
is one-to-one because if 3a = 3b, then we can guarantee that a = b. In contrast, the squar-
ing function f (x) = x 2 is not one-to-one, because we cannot guarantee that if a2 = b2, then
a = b (for example, (−3)2 = 32, but −3 �= 3).

Properties of Graphs

The table that follows gives us vocabulary and precise mathematical definitions for various
types of graphical behavior. Rows 1, 2, 5, and 6 describe behaviors that a function could
exhibit at a specific point. The remaining rows describe graphical behaviors that occur over
an interval I of real numbers. Much of the material in the early chapters of this book will
be dedicated to developing techniques for properly defining and identifying these types of
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6 Chapter 0 Functions and Precalculus

properties of functions. For now we present them just to set terminology and to familiarize
ourselves with various types of function behavior.

Vocabulary Definition Behavior

f has a root at x = c f (c) = 0 graph intersects the
x-axis at x = c

f has a y-intercept
at y = b

f (0) = b graph intersects the
y-axis at y = b

f is positive on I f (x) > 0 for all x ∈ I graph is above the x-axis on I

f is increasing on I f (b) > f (a)
for all b > a in I

graph moves up as we
look from left to right on I

f has a local
maximum at x = c

f (c) ≥ f (x)
for all x near x = c

graph has a relative “hilltop”
at x = c

f has a global
maximum at x = c

f (c) ≥ f (x)
for all x ∈ Domain( f )

graph is the highest
at x = c

f is concave up on I will state precisely in
Section 3.3

graph curves upwards on I
like part of a “U”

f has an inflection
point at x = c

will state precisely in
Section 3.3

graph of f changes
concavity at x = c

Of course, there are similar definitions for local and global minima and for negative, de-
creasing, and concave-down behavior; see Exercises 20 and 21. Notice that we describe
extrema (maxima and minima) by where on the x-axis they occur, since we can always find
the corresponding y-values from these x-values. The concept of “near” in the description
of a local maximum will be made more precise in Chapters 1 and 2. Inflection points and
concavity cannot be precisely defined until we learn about derivatives in Chapters 2 and 3.
In that chapter we will also learn ways for algebraically calculating the locations of extrema
and inflection points. Until then, we will have to be content with examining such things
graphically.

For example, the list that follows at the right describes some aspects of the graphical
behavior of the graph y = f (x) shown on the left.

2 3 41

y

x
�1�2�3�4

1

2

3

4

�1

�2

�3

� roots at x = −3, x ≈ −0.4, and x = 3
� y-intercept at y = −1
� local maxima at x = −2 and x = 3
� global maximum at x = −2
� inflection points at x = −1 and x = 2
� positive on (−3,−0.4)
� increasing on (−∞,−2) and (1, 3)
� concave up on (−1, 2)

In fact, technically the function f graphed at the left is increasing on the larger intervals
(−∞,−2] and [1, 3]. This is because we do have f (b) > f (a) for all values b > a in these
closed intervals.Most of the timewewill be concerned onlywith the open intervals onwhich
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a function is increasing or decreasing, but there will be a few times in later chapters when
we need to consider closed or half-closed intervals. For now, we will use open intervals
unless we require otherwise.

The increasing and/or decreasing behavior of a function is related to its average rate of
change on various intervals. The average rate of change of a function f on an interval [a, b]
measures how much the output f (x) changes over that interval. Average rates of change
will be extremely important in Chapter 2 when we study the derivative.

DEFINITION 0.6 Average Rate of Change

The average rate of change of a function f on an interval [a, b] is the slope of the line
from (a, f (a)) to (b, f (b)), which is given by the quotient

f (b) − f (a)
b− a

.

For example, the functionwhose propertieswe just enumerated is increasing on the interval
(1, 3),moving up from (1, f (1)) = (1,−2) to (3, f (3)) = (3, 0). The average rate of change tells
us how much the function increased per unit change in the input, on average:

f (3) − f (1)
3 − 1

= 0 − (−2)
2

= 1

unit up for every unit across. We can also measure average rate of change over intervals
where the function both increases and decreases; for example, with the same function, on
the interval [−3, 3] there is an average rate of change of

f (3) − f (−3)
3 − (−3)

= 0 − 0
6

= 0

units up for every unit across; look at the graph to see why this makes sense.

Sometimes a graph gets closer and closer to a horizontal or vertical line, or asymptote.
In Chapter 1, we will define asymptotes precisely, using limits. For now, we will use the
following definition: A line l is an asymptote of a function f if the difference between the
graph of l and the graph of f gets as small as wewant as either x or y increases inmagnitude.
For example, the following graph of a function f has vertical asymptotes at x = −2 and
x = 2, and a horizontal asymptote at y = 1:

A function with three asymptotes

y

x
�1�2�3�4�5

�1

�2

�3

1

2

3

4

5

1 2 3 54

Notice that a graph can cross one of its horizontal asymptotes; the preceding graph above
does so at the point (0, 1). This is just one of the reasons that we are avoiding using the
overly loose definition of asymptote that you may have heard in previous courses (“an
asymptote is a line that the graph gets infinitely close to, but never reaches”).
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8 Chapter 0 Functions and Precalculus

Examples and Explorations

EXAMPLE 1 Identifying functions and their domains and ranges

Determine whether or not each of the following relationships is a function. For each rela-
tionship that is a function, describe its natural domain and range and determine whether
or not it is one-to-one. For each relationship that is not a function, describe the parts of
the definition of a function that are violated.

(a) The rule g : R → R that assigns each real number x to the numbers whose square is x.

(b) The relationship defined by this table:
x 1 2 3 4 5 6

P(x) 5 2 9 −1 0 9

(c) Let P be the set of all living people in the world, and let W be the set of all women
that have ever lived. Define f : P → W so that each person is assigned to his or her
biological mother.

(d) f (x) = 2 − √
x + 5

(e) h(x) = 1
x 2 − 4

SOLUTION

(a) This rule is not a function, for two reasons. First of all, negative real numbers do not
have real square roots, so g is not defined on the given domain of R. Second, each
positive number x has two numbers whose square is x, namely,

√
x and −√

x, so this
rule would not send each domain element to exactly one output.

(b) The relationship P(x) defined by the table is a function, because the table assigns each
value in the domain {1, 2, 3, 4, 5, 6} to exactly one element of the range {−1, 0, 2, 5, 9}.
This function is not one-to-one because P(3) and P(6) are both equal to 9.

(c) This relationship is a function because each person has one exactly one woman who
is his or her biological mother. No person is without a biological mother, and no
person has more than one biological mother. Here the domain is P and the range is
the subset ofW consisting of women that have had biological children. This function
is not one-to-one, since there are examples of different people that have the same
biological mother.

(d) This rule is a function because for each value x for which the formula makes sense, there
is exactly one real number described by 2 − √

x + 5. For x to be in the domain, we must
have x+5 ≥ 0 (since x+5 is under a square-root sign), and thus wemust have x ≥ −5.
Therefore the domain of f is [−5,∞). The range of y = f (x) is the set of y-values that
can occur as outputs. Since

√
x + 5 can take on any value greater than or equal to 0,

the expression 2− √
x + 5 can take on any value less than or equal to 2. Therefore the

range of f is (−∞, 2]. This function is one-to-one because if f (a) = f (b), then

2 − √
a+ 5 = 2 −

√
b+ 5 =⇒ √

a+ 5 =
√
b+ 5

=⇒ a+ 5 = b+ 5

=⇒ a = b.

(e) The rule h(x) is a function because for each value x at which 1
x2 − 4

is defined, there is
exactly one real number that h describes. The domain of h(x) is the set of all x-values
for which x 2 − 4 �= 0 (since x 2 − 4 is in a denominator). Therefore the domain of
h is everything except x = ±2. To find the range of h(x) we must find the y-values
that can be expressed in the form y = h(x) for some x. Solving for x in terms of y

we obtain x =
√

1
y

+ 4. This means we can find an x that maps via f to y as long as

y �= 0 and 1
y

+ 4 ≥ 0. It can be shown that the solution of the latter inequality is
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(
−∞,− 1

4

]
∪ [0,∞). Therefore the range of h(x) is

(
−∞,− 1

4

]
∪ (0,∞). This function

is not one-to-one because, for example, h(1) and h(−1) are both equal to − 1
3
. �

CHECKING
THE ANSWER

The following functions f and h have domains marked in blue on the x-axis and ranges
marked in red on the y-axis:

f has domain [−5,∞)
and range (−∞, 2]

h has domain x �= ±2

and range
(
−∞,− 1

4

]
∪ (0,∞)

y

x
�10 �5

�1

�2

2

1

5 10
x

y

�4

0.5

�1

�1�3 �2 2 3 41

�0.5

1

EXAMPLE 2 Evaluating function notation

Given that f (x) = x
√
3 − x, evaluate f (2), f (a), f (x + 1), and f ( f (x)).

SOLUTION

To evaluate f (x) = x
√
3 − x at a given input, simply replace x in the formula with whatever

the input is:

f (2) = 2
√
3 − 2 = 2

√
1 = 2 ;

f (a) = a
√
3 − a ;

f (x + 1) = (x + 1)
√
3 − (x + 1) ;

f ( f (x)) = f (x)
√
3 − f (x) = (x

√
3 − x )

√
3 − x

√
3 − x . �

EXAMPLE 3 Finding a “good” graphing window

Use a graphing utility to find a graphingwindow that accurately represents the key features
of the graph of the function f (x) = x 3 − 6x 2 − x + 6.

SOLUTION

The three graphs that follow show y = f (x) in various graphing windows. Each of these
windows is “bad” in the sense that the true behavior of the graph of f is not represented.

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−3, 3], y ∈ [−10, 10]

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−100, 100], y ∈ [−50, 50]

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−20, 20], y ∈ [−1000, 1000]

�3 3

�10

10

�100 100

�50

50

�20 20

�1000

1000
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